国产永久免费裸体美女无遮挡网站,亚洲综合第一网,国久久,男人j捅进美女p

  • 在線客服

蘇州博為峰軟件培訓(xùn)

軟件測(cè)試課,大數(shù)據(jù)分析課,超全棧開發(fā)就業(yè)培訓(xùn),Web前端培訓(xùn),python全棧開發(fā)課程,Java...

機(jī)構(gòu)課程咨詢服務(wù):
1294015820400-0808-102
更新時(shí)間:2022-12-12 11:47:08

大數(shù)據(jù)分析就業(yè)班

蘇州大數(shù)據(jù)分析就業(yè)班

授課機(jī)構(gòu) 蘇州博為峰軟件培訓(xùn)
上課地點(diǎn) 蘇州姑蘇石路街道|詳細(xì)地圖
成交/評(píng)價(jià) 5.0分
聯(lián)系電話 400-0808-102

課程詳情

新聞導(dǎo)讀
大數(shù)據(jù)分析培訓(xùn)課程通過線上線下、直播錄播與平臺(tái)結(jié)合的方式,讓您在業(yè)務(wù)數(shù)據(jù)分析、計(jì)算機(jī)編程、數(shù)據(jù)挖掘/機(jī)器學(xué)習(xí)算法上獲得提升:從基礎(chǔ)的數(shù)據(jù)分析理論方法到需備的數(shù)據(jù)分析算法,再到流行的數(shù)據(jù)可視化技術(shù)以及基于Python的數(shù)據(jù)分析語言,直至?xí)r下熱門的大數(shù)據(jù)分析技術(shù)。
課程內(nèi)容
大數(shù)據(jù)分析和數(shù)據(jù)分析師的含義
  • 什么是大數(shù)據(jù)分析

    隨著大數(shù)據(jù)(BIG DATA)時(shí)代的來臨,數(shù)據(jù)倉(cāng)庫、數(shù)據(jù)安全、數(shù)據(jù)分析、數(shù)據(jù)挖掘等圍繞大數(shù)據(jù)的商業(yè)價(jià)值利用,逐漸成為企業(yè)和資本爭(zhēng)相追捧的焦點(diǎn)。商業(yè)大數(shù)據(jù)分析,是指通過技術(shù)和數(shù)據(jù)分析工具對(duì)規(guī)模巨大的商業(yè)數(shù)據(jù)進(jìn)行多維度分析,洞悉用戶屬性特征和行為習(xí)慣,挖掘用戶個(gè)性化需求,預(yù)測(cè)業(yè)務(wù)狀況,改進(jìn)決策流程,并通過自動(dòng)化流程實(shí)現(xiàn)用戶交互。

  • 數(shù)據(jù)分析師含義

    數(shù)據(jù)分析師是指專門從事數(shù)據(jù)搜集、整理、 分析,并依據(jù)數(shù)據(jù)做出行業(yè)研究、評(píng)估和預(yù)測(cè)的專業(yè)人員。阿里巴巴研究員薛貴榮曾表示,“數(shù)據(jù)分析師就是一群玩數(shù)據(jù)的人,玩出數(shù)據(jù)的商業(yè)價(jià)值,讓數(shù)據(jù)變成生產(chǎn)力。

課程適合哪些人群學(xué)習(xí)

零基礎(chǔ)想入行

?專業(yè)不受限,崗位薪資高

?0基礎(chǔ)就能學(xué),學(xué)完就能用

?能寫在簡(jiǎn)歷上的真實(shí)項(xiàng)目經(jīng)驗(yàn)

提升自己想轉(zhuǎn)行

?不拍腦門,用數(shù)據(jù)驅(qū)動(dòng)業(yè)務(wù)決策

?搭建核心指標(biāo),抓住業(yè)務(wù)核心

?自動(dòng)化辦公,提升找工作效率

有志于AI方向發(fā)展

?不拘泥于現(xiàn)況,擠進(jìn)智能領(lǐng)域

?成功轉(zhuǎn)型AI行業(yè)數(shù)據(jù)好人才

?站在數(shù)據(jù)前端,薪資不可估量

零死角打磨課程大綱
課程大綱 課題名稱 課程內(nèi)容
前導(dǎo)基礎(chǔ) 數(shù)據(jù)分析入門

1、數(shù)據(jù)分析入門 2、數(shù)據(jù)分析的意義

3、數(shù)據(jù)分析的流程控制 4、數(shù)據(jù)分析的思路與方法

邏輯為先—XMIND

1、xmind簡(jiǎn)介與基本使用 2、學(xué)習(xí)方法課堂案例

3、滴答拼車實(shí)戰(zhàn)演練 4、其他思維導(dǎo)圖介紹

專業(yè)展現(xiàn)—PPT

1、專業(yè)展現(xiàn)——PPT 2、基本簡(jiǎn)介

3、幾個(gè)不得不說的真相 4、經(jīng)驗(yàn)分享

5、實(shí)戰(zhàn)動(dòng)畫

數(shù)據(jù)分析工具安裝與環(huán)璄配置

1、Excel工具的安裝、配置與環(huán)璄測(cè)試

2、Power BI工具的安裝、配置與環(huán)璄測(cè)試

3、Tableau工具的安裝、配置與環(huán)璄測(cè)試

4、MySQL數(shù)據(jù)庫的安裝、配置與環(huán)璄測(cè)試

5、SPSS數(shù)據(jù)挖掘工具安裝、配置與環(huán)璄測(cè)試

6、SAS數(shù)據(jù)挖掘工具安裝、配置與環(huán)璄測(cè)試

7、Python開發(fā)工具的安裝、配置與開發(fā)環(huán)璄測(cè)試

Linux基礎(chǔ)應(yīng)用之大數(shù)據(jù)必知必會(huì)

1、虛擬機(jī)的安裝配置 2、虛擬機(jī)網(wǎng)絡(luò)配置

3、安裝Linux 4、利用SSH連結(jié)Linux

5、Linux基礎(chǔ)命令 6、Linux系統(tǒng)管理

數(shù)據(jù)分析的Python語言基礎(chǔ)

1、python課程的目的 2、使用JupyterLab

3、python數(shù)據(jù)類型 4、元組、列表、字典

5、python分支結(jié)構(gòu) 6、python字符串處理+隨機(jī)函數(shù)

7、pthon循環(huán)結(jié)構(gòu) 8、python面向過程函數(shù)操作

9、python面向?qū)ο?/p>

問題定義與數(shù)據(jù)獲取 數(shù)據(jù)分析項(xiàng)目流程

1、問題界定 2、問題拆分 3、指標(biāo)確定

4、數(shù)據(jù)收集 5、報(bào)告方案 6、趨勢(shì)預(yù)測(cè)

7、數(shù)據(jù)分析 8、趨勢(shì)預(yù)測(cè) 9、報(bào)告方案

問題的定義

1、邊界:明確問題的邊界

2、邏輯:確定業(yè)務(wù)的關(guān)鍵指標(biāo)和邏輯

3、定性分析與定量分析

分析問題的模型

基于經(jīng)典的模型

1、5W2H

2、SWORT

3、4P管理模型

4、CATWOE

5、STAR原則、波士頓5力模型

基于業(yè)務(wù)的模型

1、用戶畫像

2、 銷售影響因素

3、市場(chǎng)變化因素

4、AARRR流量模型

5、金定塔思考方法

數(shù)據(jù)清洗與處理

1、數(shù)據(jù)科學(xué)過程 2、數(shù)據(jù)清洗定義

3、數(shù)據(jù)清洗任務(wù) 4、數(shù)據(jù)清洗流程

5、數(shù)據(jù)清洗環(huán)境 6、數(shù)據(jù)清洗實(shí)例說明

7、數(shù)據(jù)標(biāo)準(zhǔn)化 8、數(shù)據(jù)格式與編碼

9、數(shù)據(jù)清洗常用工具 10、數(shù)據(jù)清洗基本技術(shù)方法

11、數(shù)據(jù)抽取 12、數(shù)據(jù)轉(zhuǎn)換與加載

內(nèi)部數(shù)據(jù)的獲取

1、產(chǎn)品數(shù)據(jù) 2、用戶數(shù)據(jù)

3、行為數(shù)據(jù) 4、訂單數(shù)據(jù)

外部公開數(shù)據(jù)

1、開放網(wǎng)站 2、政務(wù)公開數(shù)據(jù)

3、數(shù)據(jù)科學(xué)競(jìng)賽 4、數(shù)據(jù)交易平臺(tái)

5、行業(yè)報(bào)告 6、指數(shù)平臺(tái)

Web網(wǎng)站數(shù)據(jù)抓取

1、財(cái)經(jīng)數(shù)據(jù)抓取 2、投資數(shù)據(jù)抓取

3、房產(chǎn)數(shù)據(jù)抓取 4、輿情數(shù)據(jù)抓取

5、娛樂數(shù)據(jù)抓取 6、新媒體數(shù)據(jù)抓取

數(shù)據(jù)查詢與提取 SQL基礎(chǔ)操作

1、建庫 2、建表

3、建約束 4、創(chuàng)建索引

5、添加、刪除、修改數(shù)據(jù)

利用SQL完成數(shù)據(jù)的預(yù)處理

1、缺失值處理:對(duì)缺失數(shù)據(jù)行進(jìn)行刪除或填充

2、重復(fù)值處理:重復(fù)值的判斷與刪除

3、異常值處理:清除不必要的空格和異常數(shù)據(jù)

利用SQL進(jìn)行業(yè)務(wù)數(shù)據(jù)查詢

1、利用SQL進(jìn)行簡(jiǎn)單的業(yè)務(wù)數(shù)據(jù)查詢

2、利用SQL完成復(fù)雜條件查詢

3、利用多表關(guān)聯(lián)完成復(fù)雜業(yè)務(wù)查詢

4、利用嵌套子查詢完成復(fù)雜業(yè)務(wù)數(shù)據(jù)分析

高級(jí)SQL分析

1、聚合、分組、排序 2、函數(shù)

3、行列轉(zhuǎn)換 4、視圖與存儲(chǔ)過程

業(yè)務(wù)指標(biāo)統(tǒng)計(jì)分析

1、業(yè)務(wù)數(shù)據(jù)表關(guān)聯(lián)查詢及查詢

2、結(jié)果縱向融合

3、?常業(yè)務(wù)需求數(shù)據(jù)寬表構(gòu)建

4、應(yīng)??查詢處理復(fù)雜業(yè)務(wù)

數(shù)理統(tǒng)計(jì)基礎(chǔ) 數(shù)據(jù)分析的數(shù)學(xué)基礎(chǔ)

1、計(jì)算和連續(xù)函數(shù)的性質(zhì) 2、導(dǎo)數(shù)/微分的概念和運(yùn)算法則

3、積分的概念和運(yùn)算法則

4、冪級(jí)數(shù)、泰勒級(jí)數(shù)、傅里葉級(jí)數(shù)、傅里葉變換

5、向量的概念和運(yùn)算

6、矩陣的轉(zhuǎn)置、乘法、逆矩陣、正交矩陣、SVD奇異值分解、特征值

7、行列式的計(jì)算和性質(zhì) 8、凸優(yōu)化

Python數(shù)據(jù)分析 基于Numpy庫的Python數(shù)據(jù)科學(xué)計(jì)算

1、創(chuàng)建數(shù)組 2、切片索引

3、數(shù)組操作 4、字符串函數(shù)

5、數(shù)學(xué)函數(shù) 6、統(tǒng)計(jì)函數(shù)

基于Pandas庫的Python數(shù)據(jù)處理與分析

1、直方圖:探索變量的分布規(guī)律 2、條形圖:展示數(shù)值變量的集中趨勢(shì)

3、散點(diǎn)圖:表示整體數(shù)據(jù)的分布規(guī)律 4、箱線圖:表示數(shù)據(jù)分散性,中位數(shù)

5、提琴圖:分位數(shù)的位置及數(shù)據(jù)密度 6、回歸圖:尋找數(shù)據(jù)之間的線性關(guān)系

7、熱力圖:表未數(shù)值的大小或者相關(guān)性的高低

大數(shù)據(jù)分析 HIVE大數(shù)據(jù)查詢平臺(tái)搭建

1、大數(shù)據(jù)概述

2、?數(shù)據(jù)集群 Hadoop 架構(gòu)

3、Hive開發(fā)環(huán)璄搭建

HIVE與MySQL進(jìn)行數(shù)據(jù)交換

1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive

2、從Hive導(dǎo)出數(shù)據(jù)到MySQL

HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢

1、Hive數(shù)倉(cāng)

2、HQL 數(shù)據(jù)查詢基礎(chǔ)語法

HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢

1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive

2、從Hive導(dǎo)出數(shù)據(jù)到MySQL

HQL業(yè)務(wù)數(shù)據(jù)指標(biāo)統(tǒng)計(jì)分析

1、分區(qū)表 2、分桶表

3、關(guān)聯(lián)表 4、數(shù)據(jù)查詢

HQL海量數(shù)據(jù)查詢優(yōu)化

1、常?內(nèi)置函數(shù)及開窗函數(shù)

2、特殊類型數(shù)組查詢?式

3、HQL 查詢語句優(yōu)化技巧

建模與數(shù)據(jù)挖掘 數(shù)據(jù)挖掘與分析算法

1、描述統(tǒng)計(jì) 2、相關(guān)分析

3、判別分析 4、方差分析

5、時(shí)間序列分析 6、主成分分析

7、信度分析 8、因子分析

9、回歸分析 10、對(duì)應(yīng)分析

11、列聯(lián)表分析 12、聚類分析

數(shù)據(jù)挖掘工具SPSS

1、從MySQL中導(dǎo)入數(shù)據(jù)到Hive

2、從Hive導(dǎo)出數(shù)據(jù)到MySQL

HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢

1、課程規(guī)劃與簡(jiǎn)介 2、數(shù)據(jù)挖掘項(xiàng)目生命周期

3、簡(jiǎn)單的統(tǒng)計(jì)學(xué)基礎(chǔ) 4、用Modeler試手挖掘流程

5、數(shù)據(jù)挖掘的知識(shí)類型 6、商業(yè)分析基礎(chǔ)簡(jiǎn)介

7、信度分析 8、因子分析 9、回歸分析 10、對(duì)應(yīng)分析

11、列聯(lián)表分析 12、聚類分析

數(shù)據(jù)挖掘工具SAS

1、SAS概述:SAS簡(jiǎn)介與教育版安裝 2、SAS概述:教育版基本使用

3、SAS編程基礎(chǔ) 4、SAS編程基礎(chǔ)7-循環(huán)

5、SAS數(shù)據(jù)集操作1-合并 6、SAS數(shù)據(jù)集操作2-排序與對(duì)比

7、SAS數(shù)據(jù)集操作3-查重與篩選 8、練習(xí)-斐波那契數(shù)列

9、練習(xí)-百元百雞問題

人工智能預(yù)測(cè)算法 人工智能實(shí)戰(zhàn)十大預(yù)測(cè)數(shù)據(jù)算法

1、機(jī)器學(xué)習(xí)入門 2、sk-learn機(jī)器學(xué)習(xí)庫

3、十大預(yù)測(cè)算法原理與使用場(chǎng)景 4、算法調(diào)用、參數(shù)設(shè)置

5、特征選擇、特征工程 6、回歸預(yù)測(cè)模型實(shí)戰(zhàn)

7. 分類預(yù)測(cè)試模型實(shí)戰(zhàn) 8. 聚類模型實(shí)戰(zhàn)

9、集成學(xué)習(xí) 10、模型優(yōu)化

可視化商業(yè)報(bào)告撰寫 商業(yè)智能與可視化分析實(shí)戰(zhàn)

案例-1:BI電商數(shù)據(jù)市場(chǎng)分析項(xiàng)目實(shí)戰(zhàn)

案例-2:BI電商數(shù)據(jù)客戶分析項(xiàng)目實(shí)戰(zhàn)

案例-3:BI可視化關(guān)于公司運(yùn)營(yíng)情況的相關(guān)分析

案例-4:基于Tableau的客戶主題對(duì)客戶進(jìn)行合理分群

案例-5:基于Tableau的營(yíng)銷主題分析如何衡量媒體的營(yíng)銷價(jià)值

案例-6:基于Tableau的保公司索賠情況分析

數(shù)據(jù)可視化報(bào)告撰寫

1、數(shù)據(jù)可視化的概念 2、 數(shù)據(jù)可視化的意義

3、 數(shù)據(jù)可視化的對(duì)比 4、 數(shù)據(jù)可視化的分類

5、數(shù)據(jù)可視化圖表舉例 6、 數(shù)據(jù)可視化應(yīng)用領(lǐng)域

7、數(shù)據(jù)可視化步驟 8、 數(shù)據(jù)可視化工具梯度

9、圖表呈現(xiàn)流程 10、數(shù)據(jù)報(bào)告撰寫

實(shí)戰(zhàn):O2O電商平臺(tái)功能優(yōu)化效果評(píng)估及可視化數(shù)據(jù)分析報(bào)告撰寫

1、了解電商業(yè)務(wù)背景

2、以客戶分析為應(yīng)用場(chǎng)景,對(duì)數(shù)據(jù)進(jìn)行加載、清洗、分析及模型建立

3、以貨品分析為應(yīng)用場(chǎng)景,針對(duì)品類銷售及商品銷售進(jìn)行分析

4、以流量分析為應(yīng)用場(chǎng)景,針對(duì)流量渠道及關(guān)鍵詞做有效分析

5、根據(jù)業(yè)務(wù)實(shí)際背景做輿情分析

6、將分析結(jié)果及建議制成報(bào)告進(jìn)行發(fā)布

商業(yè)分析項(xiàng)目實(shí)戰(zhàn) 商業(yè)項(xiàng)目實(shí)戰(zhàn)

商業(yè)項(xiàng)目實(shí)戰(zhàn)01:電商數(shù)據(jù)分析——分析方式之漏斗模型及數(shù)據(jù)量化

商業(yè)項(xiàng)目實(shí)戰(zhàn)02:電商用戶行為與營(yíng)銷模型實(shí)戰(zhàn)

商業(yè)項(xiàng)目實(shí)戰(zhàn)03:金融風(fēng)控模型的構(gòu)建與分析實(shí)戰(zhàn)

商業(yè)項(xiàng)目實(shí)戰(zhàn)04:展會(huì)電話邀約項(xiàng)目數(shù)據(jù)分析實(shí)戰(zhàn)

商業(yè)項(xiàng)目實(shí)戰(zhàn)05:零售行業(yè)數(shù)據(jù)分析

豐富的課程特色搶先看

物美

花費(fèi)幾周時(shí)間,從小白成長(zhǎng)為企業(yè)急需的Python大數(shù)據(jù)分析師,性價(jià)比高。
貨真
30+項(xiàng)目案例全程貫穿+企業(yè)級(jí)商業(yè)數(shù)據(jù)分析案例剖析精講。
易學(xué)
不限專業(yè),零基礎(chǔ)小白也能學(xué),文科生、理科生、@生均可學(xué)得會(huì)。
博為峰公司簡(jiǎn)介

博為峰,中國(guó)職業(yè)人才培訓(xùn)領(lǐng)域的先行者,隸屬于上海博為峰軟件技術(shù)股份有限公司(股票代碼:836392,2020年4月入選新三板創(chuàng)新層)。 公司總部位于上海,在北京、深圳、廣州、南京、西安、成都、杭州、合肥、重慶、南昌、長(zhǎng)沙、武漢、蘇州、石家莊、濟(jì)南、鄭州、天津、青島等地均設(shè)有分支服務(wù)機(jī)構(gòu)。

十?dāng)?shù)年來,博為峰始終堅(jiān)守教學(xué)品質(zhì),真誠(chéng)服務(wù)學(xué)員,發(fā)展至今,每年畢業(yè)學(xué)員10000+,就業(yè)率長(zhǎng)期保持在99%以上。博為峰已先后為7000多家國(guó)內(nèi)外企業(yè)輸送軟件技術(shù)精英,未來還將根據(jù)產(chǎn)業(yè)變遷和技術(shù)革新開設(shè)更多的緊缺人才實(shí)訓(xùn)項(xiàng)目:幫助更多的應(yīng)屆畢業(yè)生和職場(chǎng)新人找到滿意工作,實(shí)現(xiàn)職業(yè)夢(mèng)想;幫助更多的用人單位輕松招到可用之才,推動(dòng)企業(yè)發(fā)展和產(chǎn)業(yè)進(jìn)步。

【教學(xué)成果】

孵化出國(guó)內(nèi)較大的軟件測(cè)試品牌、社區(qū)-51testing,是中國(guó)軟件測(cè)試人才的搖籃。

博為峰累計(jì)已畢業(yè)70000+學(xué)員,開班上千期,就業(yè)率99%以上,學(xué)員入職7000多家企業(yè),舉辦90場(chǎng)公益沙龍,出版16本叢書,發(fā)型電子雜志57期。


校區(qū)地址

姑蘇區(qū)廣濟(jì)南路18號(hào)中盛艾美寫字樓805室

課程評(píng)價(jià)
聚劃算
機(jī)構(gòu)簡(jiǎn)介 |課程列表 |機(jī)構(gòu)相冊(cè) |聯(lián)系我們
機(jī)構(gòu)地址:蘇州姑蘇區(qū)廣濟(jì)南路18號(hào)中盛艾美寫字樓805室
請(qǐng)咨詢: 400-0808-102
免責(zé)聲明 | 版權(quán)/投訴舉報(bào)
匯上優(yōu)課

微信選課
享更多優(yōu)質(zhì)好課!

本頁面由主體*蘇州才思教育*自行上傳,本網(wǎng)不對(duì)該頁面內(nèi)容(包括但不限于文字、圖片)真實(shí)性和知識(shí)產(chǎn)權(quán)負(fù)責(zé),如有侵權(quán)請(qǐng)聯(lián)系處理刪除qq:16720809  。
婷婷激情五月网| 日日夜夜人人骑| 91精品国产综合久久精品色欲 | 黄色电影久久| 超碰系列| 国模无码视频一区二区三区| 欧美三码在线| 精品无码一级毛钱| 日韩av天天艹| 97精品免费公开在线视频| 奇米网天天干| 青草综合视频| 狠狠亚洲婷婷综合色香五月排名| 亚洲激情图蜜桃Av| 天天五月激情综合| 91精品亚洲| 无码1234| 喷水无码视频| 超碰在线看| 97在线激情| 乱伦视频精选| 亚洲综合精品视频| 五月六月丁香| 人妻日韩中文字幕| 大奶香蕉网| 熟女少妇一区二区三区| 久久亚洲精品中文字幕无码| 久久综合本道mp4| 久久久国产一区二| 久久成人绳艺捆绑| 成人午夜性A级毛片免费| 欧美操呦呦呦| 亚洲中文字幕 妻| 99爱爱| 欧美亚洲另类丝袜综合网| 凹凸精品视频| 黄色日本韩国网站| 亚洲国产欧美精品另类| 人妻少妇乱子伦精品| 色播五六月| 搭讪附近人妻中文字幕|